74 research outputs found

    Joint cross-domain classification and subspace learning for unsupervised adaptation

    Get PDF
    Domain adaptation aims at adapting the knowledge acquired on a source domain to a new different but related target domain. Several approaches have beenproposed for classification tasks in the unsupervised scenario, where no labeled target data are available. Most of the attention has been dedicated to searching a new domain-invariant representation, leaving the definition of the prediction function to a second stage. Here we propose to learn both jointly. Specifically we learn the source subspace that best matches the target subspace while at the same time minimizing a regularized misclassification loss. We provide an alternating optimization technique based on stochastic sub-gradient descent to solve the learning problem and we demonstrate its performance on several domain adaptation tasks.Comment: Paper is under consideration at Pattern Recognition Letter

    Unsupervised Human Action Detection by Action Matching

    Full text link
    We propose a new task of unsupervised action detection by action matching. Given two long videos, the objective is to temporally detect all pairs of matching video segments. A pair of video segments are matched if they share the same human action. The task is category independent---it does not matter what action is being performed---and no supervision is used to discover such video segments. Unsupervised action detection by action matching allows us to align videos in a meaningful manner. As such, it can be used to discover new action categories or as an action proposal technique within, say, an action detection pipeline. Moreover, it is a useful pre-processing step for generating video highlights, e.g., from sports videos. We present an effective and efficient method for unsupervised action detection. We use an unsupervised temporal encoding method and exploit the temporal consistency in human actions to obtain candidate action segments. We evaluate our method on this challenging task using three activity recognition benchmarks, namely, the MPII Cooking activities dataset, the THUMOS15 action detection benchmark and a new dataset called the IKEA dataset. On the MPII Cooking dataset we detect action segments with a precision of 21.6% and recall of 11.7% over 946 long video pairs and over 5000 ground truth action segments. Similarly, on THUMOS dataset we obtain 18.4% precision and 25.1% recall over 5094 ground truth action segment pairs.Comment: IEEE International Conference on Computer Vision and Pattern Recognition CVPR 2017 Workshop

    Location recognition over large time lags

    Get PDF
    Would it be possible to automatically associate ancient pictures to modern ones and create fancy cultural heritage city maps? We introduce here the task of recognizing the location depicted in an old photo given modern annotated images collected from the Internet. We present an extensive analysis on different features, looking for the most discriminative and most robust to the image variability induced by large time lags. Moreover, we show that the described task benefits from domain adaptation

    Generalized Rank Pooling for Activity Recognition

    Full text link
    Most popular deep models for action recognition split video sequences into short sub-sequences consisting of a few frames; frame-based features are then pooled for recognizing the activity. Usually, this pooling step discards the temporal order of the frames, which could otherwise be used for better recognition. Towards this end, we propose a novel pooling method, generalized rank pooling (GRP), that takes as input, features from the intermediate layers of a CNN that is trained on tiny sub-sequences, and produces as output the parameters of a subspace which (i) provides a low-rank approximation to the features and (ii) preserves their temporal order. We propose to use these parameters as a compact representation for the video sequence, which is then used in a classification setup. We formulate an objective for computing this subspace as a Riemannian optimization problem on the Grassmann manifold, and propose an efficient conjugate gradient scheme for solving it. Experiments on several activity recognition datasets show that our scheme leads to state-of-the-art performance.Comment: Accepted at IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Guided Open Vocabulary Image Captioning with Constrained Beam Search

    Full text link
    Existing image captioning models do not generalize well to out-of-domain images containing novel scenes or objects. This limitation severely hinders the use of these models in real world applications dealing with images in the wild. We address this problem using a flexible approach that enables existing deep captioning architectures to take advantage of image taggers at test time, without re-training. Our method uses constrained beam search to force the inclusion of selected tag words in the output, and fixed, pretrained word embeddings to facilitate vocabulary expansion to previously unseen tag words. Using this approach we achieve state of the art results for out-of-domain captioning on MSCOCO (and improved results for in-domain captioning). Perhaps surprisingly, our results significantly outperform approaches that incorporate the same tag predictions into the learning algorithm. We also show that we can significantly improve the quality of generated ImageNet captions by leveraging ground-truth labels.Comment: EMNLP 201

    DeepPermNet: Visual Permutation Learning

    Full text link
    We present a principled approach to uncover the structure of visual data by solving a novel deep learning task coined visual permutation learning. The goal of this task is to find the permutation that recovers the structure of data from shuffled versions of it. In the case of natural images, this task boils down to recovering the original image from patches shuffled by an unknown permutation matrix. Unfortunately, permutation matrices are discrete, thereby posing difficulties for gradient-based methods. To this end, we resort to a continuous approximation of these matrices using doubly-stochastic matrices which we generate from standard CNN predictions using Sinkhorn iterations. Unrolling these iterations in a Sinkhorn network layer, we propose DeepPermNet, an end-to-end CNN model for this task. The utility of DeepPermNet is demonstrated on two challenging computer vision problems, namely, (i) relative attributes learning and (ii) self-supervised representation learning. Our results show state-of-the-art performance on the Public Figures and OSR benchmarks for (i) and on the classification and segmentation tasks on the PASCAL VOC dataset for (ii).Comment: Accepted in IEEE International Conference on Computer Vision and Pattern Recognition CVPR 201
    • …
    corecore